Visuotopic organization of macaque posterior parietal cortex: a functional magnetic resonance imaging study.

نویسندگان

  • Michael J Arcaro
  • Mark A Pinsk
  • Xin Li
  • Sabine Kastner
چکیده

Macaque anatomy and physiology studies have revealed multiple visual areas in posterior parietal cortex (PPC). While many response properties of PPC neurons have been probed, little is known about PPC's large-scale functional topography-specifically related to visuotopic organization. Using high-resolution functional magnetic resonance imaging at 3 T with a phase-encoded retinotopic mapping paradigm in the awake macaque, a large-scale visuotopic organization along lateral portions of PPC anterior to area V3a and extending into the lateral intraparietal sulcus (LIP) was found. We identify two new visual field maps anterior to V3a within caudal PPC, referred to as caudal intraparietal-1 (CIP-1) and CIP-2. The polar angle representation in CIP-1 extends from regions near the upper vertical meridian (that is the shared border with V3a and dorsal prelunate) to those within the lower visual field (that is the shared border with CIP-2). The polar angle representation in CIP-2 is a mirror reversal of the CIP-1 representation. CIP-1 and CIP-2 share a representation of central space on the lateral border. Anterior to CIP-2, a third polar angle representation was found within LIP, referred to as visuotopic LIP. The polar angle representation in LIP extends from regions near the upper vertical meridian (that is the shared border with CIP-2) to those near the lower vertical meridian. Representations of central visual space were identified within dorsal portions of LIP with peripheral representations in ventral portions. We also consider the topographic large-scale organization found within macaque PPC relative to that observed in human PPC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing.

We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that ge...

متن کامل

Structural connectivity of visuotopic intraparietal sulcus

The intraparietal sulcus (IPS) contains topographically organized regions, similar to retinotopic maps in visual cortex. These regions, referred to as IPS1-4, show similar functional responses to the mapping tasks used to define them, yet differing responses to tests of other posterior parietal cortex (PPC) functions such as short-term memory, eye movements and object viewing, suggesting that t...

متن کامل

Functional Organization of Human Posterior Parietal Cortex: Grasping-and 2 Reaching-related Activations Relative to Topographically Organized Cortex 3 Department of Psychology and Grasping and Reaching Activity in Human Topographic Ppc 13

24 The act of reaching to grasp an object requires the coordination between transporting the 25 arm and shaping the hand. Neurophysiological, neuroimaging, neuroanatomical and 26 neuropsychological studies in macaque monkeys and humans suggest that the neural 27 networks underlying grasping and reaching acts are at least partially separable within the 28 posterior parietal cortex (PPC). To bett...

متن کامل

Visuotopic cortical connectivity underlying attention revealed with white-matter tractography.

Visual attention selects behaviorally relevant information for detailed processing by resolving competition for representation among stimuli in retinotopically organized visual cortex. The signals that control this attentional biasing are thought to arise in a frontoparietal network of several brain regions, including posterior parietal cortex. Recent studies have revealed a topographic organiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 6  شماره 

صفحات  -

تاریخ انتشار 2011